Node-Based Induction of Tree-Substitution
Grammars

Rose Sloan

Advised by Robert Frank
April 20, 2016

Abstract

Traditionally, syntactic parsing is done using probabilistic context-free grammars (PCFGs) or
variants thereof, as there are standard efficient methods for parsing with PCFGs and for ex-
tracting them from a corpus. However, PCFGs do not accurately represent many dependencies
in natural language. For example, many determiners can only occur with certain types of nouns.
Determiners like a and another can only occur with singular count nouns, while those can only
precede plural nouns, and determiners like more can precede either plural nouns or mass nouns
but not singular count nouns. To represent these dependencies with a PCFG, we must have
many separate categories for both determiners and nouns, as a simple rule like NP — DT N
(where DT stands for determiner and N stands for noun) will overgenerate noun phrases like a

water or those cat.

One formalism that makes representing long-range dependencies much simpler is probabilistic
tree-substitution grammars (PTSGs). While every CFG rule can be seen as one level of a
syntactic parse tree, and thus a subtree of height 2, TSG rules can be any subtree of a syntactic
tree, thus allowing them to concisely represent dependencies that involve more than one level
of syntactic structure. For example, a TSG for generating noun phrases can represent what

types of nouns common determiners can precede using rules like the following:

NP NP NP
N N P
DT N DT N DT N
| | | | |
a NN those NNS the

In this thesis, I propose a method for inducing tree-substitution grammars from a parsed corpus,
in which I determine what nodes are substitution nodes by parsing the training set using a series
of randomly sampled PTSGs and looking at the substitution nodes in the most probable parses.
I also compare my approach to the previous approach of data-oriented parsing, an approach
that seeks to find all possible TSG rules that could represent a data set and thus results in very
large grammars, as well as a number of simple baselines. Specifically, I examine how each of

these approaches performs when trained on a set of noun phrases from child-directed speech.

i

Contents

Abstract

1 Introduction

1.1 Syntactic Parsing
1.2 Nouns and Determiners
1.3 Tree-Substitution Grammars v v v e e

2 Previous Approaches

2.1 Data-Oriented Parsing
2.2 Adaptor Grammars
2.3 Fragment Grammars

3 Node-Based Induction

3.1 The Algorithm
3.1.1 Concept
3.1.2 Sampling and Parsing Lo
3.1.3 An Example

1l

3.1.4 Updating Probabilities

3.1.5 Getting the Final Grammar

3.2 Data Selection

3.3 Tests Run

4 Results

5 Conclusion

Bibliography

v

15

18

18

Chapter 1

Introduction

1.1 Syntactic Parsing

Syntactic parsing is the problem of taking in a string of words and generating a parse tree that
represents the string’s syntactic structure. This is done using some formal set of rules that
represent how a string could be generated, known as a grammar. One simple and very common
grammar formalism is that of a probabilistic context-free grammar (PCFG). A context-free
grammar is a 4-tuple (N, T, S, R) where N is a set of nonterminals, 7" is a set of terminals, .S is
an element of N that serves as a start symbol, and R is a set of rules, all of which are ordered
pairs in the set N x (N UT)* (Collins, 2003). (These rules are usually written in the format
A — [, where A is a nonterminal and £ is a string of terminals and nonterminals.) The set
of parse trees generated by a grammar are the trees whose roots are the start symbol, whose
leaves are all terminals, and whose non-leaf nodes are nonterminals whose children correspond
to the righthand side of a rule whose lefthand side is that nonterminal. In the domain of
natural language, typically terminals correspond to words whereas nonterminals correspond
to grammatical categories. Thus, a typical rule might be S — NP VP, demonstrating that

sentences can branch into a noun phrase and verb phrase.

Probabilistic context-free grammars differ from context-free grammars only in that they addi-
tionally assign a probability to each rule so that the probabilities of all the rules whose lefthand
side is a given terminal sum to 1. Thus, this probability represents the odds of expanding that
nonterminal with that rule. Then, we can also assign a probability to each parse tree generated
by a PCFG by multiplying together the probabilities of all the rules used to generate the tree.
Thus, if a PCFG can generate multiple parse trees for the same sentence, we can decide which
one is most likely by determining which one has the highest probability. This allows PCFGs to

return a single best parse even when parsing ambiguous languages.

2 Chapter 1. Introduction

PCFGs are simple to induce and to use for parsing, and as such, they are commonly used in
parsing. However, they suffer, because they are, as their name suggests, context-free. The rule
used to expand any given nonterminal is independent of all other nodes in the tree. (In fact, it
is independent of everything but the identity of the node itself.) However, this independence
assumption does not hold in natural language, which contains a vast number of short and long
range dependencies. As such, PCFGs, especially when using standard grammatical categories

as nonterminals, fail to capture many common linguistic phenomena.

1.2 Nouns and Determiners

In English, one case that PCFGs are ill equipped to handle is the case of simple noun phrases
consisting of a determiner followed by a noun, as the grammaticality of these phrases is de-
pendent on what types of nouns the determiner in question can precede. For example, while
the can precede any noun, determiners like a and another can only occur with singular count
nouns, while those can only precede plural nouns, and determiners like more can precede either
plural nouns or mass nouns but not singular count nouns. Thus, the noun phrases a book, more

coffee, and those cards are grammatical, whereas a cards, more book, and those coffee are not.

Representing these sorts of noun phrases with a PCFG is difficult. Consider the following toy

corpus:
(1) a. NP b. NP
PN N
DT N DT N
| | | |
a NN those NNS
| |
cat dogs

(Here, DT stands for determiner, N stands for any noun, NN specifically refers to singular count

nouns, and NNS refers to plural nouns.)

A CFG representing this corpus would need to contain the rules NP — DT N, DT — those, N
— NN, NN — cat. While these are all reasonable rules, combining them gives us the following

tree:

1.3. Tree-Substitution Grammars 3

(2) NP

/\
DT N

| |
those NN

cat

Thus, such a grammar would generate the blatantly ungrammatical noun phrase those cat.
Furthermore, even to assign it a low probability, we would need a low probability for at least
one of the rules that generated it, which would reduce the probability of at least one of the
trees in (1). While we could perhaps mitigate this problem by removing the nodes labeled N
and splitting the DT label into a set of labels corresponding to specific types of DTs, such a
solution would overlook some generalizations (including, say, that the could precede any noun).

Instead, we look for a formalism that represents these dependencies more naturally.

1.3 Tree-Substitution Grammars

One such formalism is the formalism of tree-substitution grammars (TSGs). Whereas CFG
rules can be seen as one-level subtrees of the parse trees they generate, TSG rules can be any
subtrees of these parse trees. A leaf node of a TSG rule whose label is not a lexical item is
known as a substitution node, and parse trees can be built by replacing a substitution node

with a rule whose root has the same label as the substitution node.

Formally speaking, a tree-substitution grammar is also a 4-tuple (N, T, S, R), where N is a
set of nonterminals, T" is a set of terminals, S is a nonterminal start symbol, and R is a set
of rules (Cohn et al., 2009). However, instead of the context-free rules allowed by CFGs, in
a TSG, the elements of R are all elementary trees whose internal nodes are all labeled with
nonterminals and whose leaf nodes can either be terminals or nonterminals. The nonterminal
leaf nodes are the substitution nodes. To generate a valid parse tree with a TSG, we begin with
an elementary tree whose root node is S. Then, we can replace any substitution node with
another elementary tree whose root has the same label as the substitution node. We repeat this
process until all leaf nodes have terminal labels in order to get a complete parse tree. As with
context-free grammars, we can also get a probabilistic tree-substitution grammar (PTSG) by
assigning a probability to each elementary tree so that the probabilities of all the elementary

trees whose root is a given nonterminal will always sum to 1.

Because TSGs allow for larger rules than CFGs, they can handle dependencies that CFGs do

4 Chapter 1. Introduction

not. Consider, once again, the toy corpus presented in (1). While it is impossible to represent
it using a CFG that does not overgenerate ungrammatical noun phrases, we could represent it

with a TSG containing the following rules:

(3) a. NP b. NN ec. NP d. NNS
DT N cat DT N dogs
| | | |
a NN those NNS

(3a) and (3b) can be combined to get (1a), and (3c) and (3d) can be combined to get (1b).
It is no longer possible to generate (2), as the rule that produces those has a substitution
node labeled NNS and thus can only accept plural nouns. (Similarly, the rule that produces a
requires a singular count noun). Thus, TSGs allow us to accurately capture the dependencies

between noun types and determiners.

While PTSGs present a more accurate model of natural language than PCFGs, they are also
harder to induce from a corpus. Given a parse tree for a sentence, one can determine what
CFG rules must have generated it simply by looking at each nonterminal node and its children.
Then, given an entire treebank of parse trees, one can simply extract all the necessary CFG
rules to produce that treebank and then get a PCFG by estimating the probability of each rule
using one of a variety of techniques, the simplest of which involve simply counting the number
of times each rule is used in producing the context. However, given a parse tree generated from
a PTSG, it is less clear which rules formed it, as it is unknown which of the tree’s internal
nodes were substitution nodes in its derivation and which ones were already internal nodes in
elementary trees. Furthermore, while some of the subtrees of the completed parse trees, such as
the rules presented in (3), contain linguistically relevant information, others, such as the CFG
rules discussed in section 1.2 or rules that simply memorize each full tree in the corpus, are not
specific enough or overly specific and, as such, should have low probability or not be present in
a PTSG at all. In this thesis, I give a brief overview of methods used to induce PTSGs from

parsed corpora and present a novel approach for doing so.

Chapter 2

Previous Approaches

2.1 Data-Oriented Parsing

Data-oriented parsing (DOP) approaches are approaches that attempt to create grammars that
include every possible rule that could have generated a corpus (Bod & Scha, 1996). In the most
straightforward case, this means that the rules that comprise the tree-substitution grammar
are simply all subtrees of all the trees in the training set. The probabilities of these trees can
then be set using a variety of approaches, ranging from relative frequency estimation (simply
counting up the number of times a subtree appears in the corpus and then normalizing) to
more complicated statistical approaches. Unsurprisingly, these approaches lead to very large
grammars, and in many cases, it is even necessary to transform each tree into some implicit
representation (such as representing larger rules in terms of smaller rules instead of fully storing

the trees) in order to store the grammar or at least to use it for parsing.

Other approaches to data-oriented parsing try to limit the size of the grammar to some extent.
In the simplest case, this means that instead of simply taking every subtree that appears in
the corpus, to generate the grammar, one randomly samples a certain number of subtrees
from the corpus and uses these sampled trees as the rules of the grammar (again, setting the
probabilities based on the number of times each tree was sampled using one of a variety of simple
or complex statistical approaches). This approach will result in grammars that will exclude
most large unproductive rules, but, because smaller trees are significantly more frequent than
larger trees, this may miss large but linguistically salient trees. Other approaches take a more
systematic approach to restricting the size of the grammar. For example, one approach, known
as double-DOP, creates a grammar by taking every pair of parse trees from the training set and

adding the largest subtree included in both trees (Sangati & Zuidema, 2011). This grammar

>

6 Chapter 2. Previous Approaches

is then interpolated with a CFG to create a grammar that can fully represent the training set

and that includes all larger “productive” rules.

It is worth noting that even the most restrictive DOP approaches are still, at their basic level,
trying to produce a grammar that contains all rules that could have generated the corpus.
While what “could have generated” means varies depending on the implementation, in every
case, DOP approaches try include as many potential rules as possible in the final grammars

instead of taking some optimized subset.

2.2 Adaptor Grammars

One formalism that weakens the independence assumptions of PCFGs in a way similar to
PTSGs is the formalism of adaptor grammars (Johnson et al., 2006). Adaptor grammars rely
on seeing PCFGs as distributions over trees. In a standard PCFG, the distribution of trees
rooted in a given nonterminal is dependent only on the context-free rules and the distributions
of potential children. Formally speaking, we can define G x as the distribution over trees rooted
at X and TREEDIST4(Gp,, ...,Gp,) as the probability distribution over all trees rooted at A
with k children rooted at B; through By, each generated independently from its own probability
distribution Gpg,. Then, if fx_,y is the probability of the rule X — Y, we can write:

Ga= Y. 0asp,..perTREEDISTA(Gp,, ..., Gp,)

A—Bj..BLER

Adaptor grammars loosen this independence assumption by introducing an adaptor C', which
is a vector of functions from distributions over trees to other distributions, with one function
corresponding to each nonterminal. Then, C4 is the adaptor function corresponding to the
nonterminal A, which maps distributions over trees rooted at A to other distributions of trees
rooted at A. We can now define a second distribution H4 = C4(G4) and modify our definition
of G4 so that:

Ga= Y 0asp,..p,erTREEDISTA(Cy,(Gp,), - .., Cp,(Gp,))
A—B;1...BLeER

If the adaptor functions are the identity function, this is just a PCFG. With other adaptor

functions, this can represent different types of probability distributions.

One type of adaptor grammar, known as a Pitman-Yor adaptor grammar operates under a

2.3. Fragment Grammars 7

“rich get richer” concept. While the actual model is mathematically highly complex, the basic
idea behind it is that of a Chinese restaurant process, a stochastic process in which some option
(a “table” in the Chinese restaurant metaphor) is chosen at each time step, and at time n, the
probability of choosing a new option (an “empty table”) is n+r1 while the probability of choosing
any previously chosen option is proportional to the number of times it has been chosen already

(the number of “people at the table”).

In the context of generative grammar, this means that initially, the distribution is determined
by a PCFG. However, as sentences are generated, the subtrees generated from each nonterminal
are cached. (These are not TSG-style elementary trees but instead the entire subtree rooted at
a given nonterminal.) Then, when generating a tree, when expanding a nonterminal, with some
probability, it is expanded with a PCFG rule to form a potentially new phrase, and otherwise,

it is expanded using one of the cached subtrees.

2.3 Fragment Grammars

Fragment grammars take much of the structure of Pitman-Yor adaptor grammars and incorpo-
rate it in a framework closer to tree-substitution grammars. Unlike DOP, the goal of fragment
grammars is not to find all TSG rules that could represent a corpus but to optimally represent
the corpus using TSG-style rules (O’Donnell et al., 2009). This is done by looking at trees
from a generative perspective as a Bayesian model of the relative probability of productivity
(forming novel phrases) and reuse (reusing previously constructed fragments). In particular,
as with Pitman-Yor adaptor grammars, productivity and reuse of grammatical fragments are
represented as a form of stochastic memoization, a technique used commonly in programming
(specifically dynamic algorithms). Memoization is a technique by which the results of smaller

pieces of computation (formation of syntactic trees in this context) are memorized and reused.

As with a Pitman-Yor adaptor grammar, in a fragment grammar, the distribution of the ways
to expand any given node adapts based on a Chinese restaurant process where previously seen
trees are cached and reused. However, whereas the adaptor functions in an adaptor grammar
are conditioned only on the identity of the node being expanded, fragment grammars instead
look at so-called tree prefixes, which are equivalent to the elementary trees used as TSG rules.

For example, consider the following elementary tree:

8 Chapter 2. Previous Approaches

DT N

In a Pitman-Yor adaptor grammar, this tree would be completed either using a CFG rule whose
lefthand side was N or by using one of the cached subtrees whose root is N (with the relative
probabilities determined by the Chinese restaurant process). A fragment grammar is similar.
However, if one of the cached subtrees is used, then instead of just using a subtree whose root
is N, the model would use a cached subtree that had previously been substituted into the tree
in (1). The optimal set of tree prefixes to use are then determined through repeated sampling,

using a “grow-child-or-not” procedure to determine whether or not to expand a tree prefix.

Chapter 3

Node-Based Induction

3.1 The Algorithm

3.1.1 Concept

Like the fragment grammars approach, my algorithm of node-based induction for inducing a
PTSG attempts to find an optimal subset of subtrees. However, instead of explicitly repre-
senting probability distributions over grammars, I instead assign a probability to each internal
node of each parse tree in the corpus, corresponding to the probability that that node is a
substitution node. (For simplicity of notation, throughout this section, I will be referring to
this probability for node n as p(n) or simply as node n’s probability.) It is these probabilities
that are optimized over the course of many iterations of training. Specifically, during each
iteration, an intermediate PTSG is used to parse the training set, and the probability of each

node is recalculated based on the probabilities of the different parses it generates.

Initially, the probability is set to the same value for every node in the training set. After trying
values in the range [0.35, 0.9], I experimentally determined an initial probability of 0.55 for
each node is most likely to result in a grammar that performs well on the test set. This is likely
because this value imposes a slight prior against simply memorizing the training set. However,
because the weighting of the different parses later in the algorithm tends to mitigate most
of the bias introduced from the initial node probabilities, small changes in this initialization

parameter have little effect on the final result.

10 Chapter 3. Node-Based Induction

3.1.2 Sampling and Parsing

To complete one iteration of training, we start by inducing a PTSG by randomly sampling
from the parsed training set. Specifically, we decompose each tree, randomly choosing whether
or not each internal node is a substitution node based on its probability at the start of the
iteration (so that node n has probability p(n) of being a substitution node in the decomposed
tree). The set of decomposed trees becomes our set of elementary trees for the PTSG, and we
set the probability of each elementary tree using a relative frequency estimate (that is, simply
letting the probability be the number of times that tree appears in the set of decomposed trees

divided by the total number of trees with the same root node).

Once we have induced this PTSG, we then use it to parse each tree in the training set. In
order to make parsing more efficient, any rules containing lexical items that do not appear in
the phrase being parsed are removed before parsing with a standard CKY algorithm (Schabes
et al., 1988). We can then get an intermediate probability (p;,:) for each node by examining the
probabilities of the parses in which node n is a substitution node. This intermediate probability
corresponds to the probability that the node is a substitution node when using this particular
intermediate grammar. Furthermore, we assign a weight to each parse to prioritize parses in
which some but not all of the nodes are substitution nodes (to discourage the model from doing
something similar to simply inducing a PCFG or from memorizing entire trees). Specifically, in
order to weight a parse more favorably the closer it is to having about half the internal nodes
be substitution nodes, the weight of a parse is (z) where s is the number of substitution nodes
in a parse and ¢ is the total number of internal nodes (i.e. the number of potential substitution
nodes). Then, mathematically speaking, if p(z) is the probability of a parse, w(zx) is the weight
of a parse, S is the set of all parses in which n is a substitution node, and 7' is the set of all

parses for the tree that n appears in, we can compute p;,; using the following formula:

L Sasulah(
Ptn) = S ()

3.1.3 An Example

Consider the following tree from a hypothetical training set:

3.1. The Algorithm

11

(1) NP

cat

Let us assume that our intermediate grammar produced parses with the following three sets of

elementary trees with probabilities py, po, and p3 respectively:

(2) a NP DT
N \
DT N a
|
NN
b NP
N
DT N
| |
a NN
C NP
N
DT N
| |
a NN
|
cat

NN

cat

NN

cat

The parses in (2a) and (2b) both have weights of (?) = (2) = 3, as (2a) has 2 substitution nodes

2

and (2b) has 1. However, the parse in (2c) only has weight (g) = 1, as it has no substitution

nodes. Then, we can compute p;,; for the node labeled DT, which is only a substitution node

in (2a), as:

3p1
3p1 + 3p2 + p3

Pint =

12 Chapter 3. Node-Based Induction

3.1.4 Updating Probabilities

Once we have calculated p;,:(n), we adjust the probability of node n by taking a weighted
average of this intermediate probability and the probability from the start of the round, using

the following formula:

Prew(n) = 0.6pya(n) + 0.4pin:(n)

The higher p;,; is weighted, the faster the node probabilities converge, but when p;,; is weighted
higher, each randomly selected grammar has a larger impact on the final grammar and thus
could result in a final grammar that performs poorly on the test set. The precise weighting above
was determined experimentally to provide an optimal balance between allowing each round to
significantly affect the node probabilities while still weighting p;,,; little enough so that a round

in which the intermediate PTSG is chosen suboptimally will not derail the training process.

3.1.5 Getting the Final Grammar

We compute a convergence metric by examining how close our intermediate probabilities are
to the node probabilities at the start of a round. We can say that node n has “converged” if
the difference between pyq(n) and pi,(n) is less than 0.05. The convergence metric then is the
number of “converged” nodes divided by the total number of internal nodes in all trees in the
training set. If this number is over 0.95, training comes to an end and the node probabilities

set at the end of the last round of training are used to sample the final grammar.

Once the node probabilities have been finalized, we decompose the training set 100 times using
the same method we used in training. Then, the set of decomposed trees becomes the set of
rules of our final PTSG, and, as before, probabilities are set using relative frequency estimates.
Then, once we have determined the rules and probabilities for the final PTSG, we parse each
rule in this PTSG using the other rules of the PTSG. If there is a parse for the rule made
up of smaller rules and if the probability of this parse is greater than the probability of the
larger rule, the rule is determined to be superfluous. Superfluous rules are removed from the

grammar, and the probabilities are renormalized.

Finally, in order to account for unknown words, for each part of speech appearing in the training
set, a tree with height 1 with a root labeled with the part of speech tag and with one leaf node
labeled “unk” (short for “unknown”). The probability of these rules was set according to the

number of types and tokens for the part of speech so that a part of speech with many distinct

3.2. Data Selection 13

lexical items, such as count nouns, would have a relatively high probability of unknown words
compared to a part of speech with relatively few distinct lexical items, such as determiners.

Specifically, the probability of the rule POS — unk was set to:

types(POS)
types(POS) + tokens(POS)

After adding these rules, the probabilities of all other rules whose roots were part of speech

tags were renormalized.

3.2 Data Selection

The trees used for training and test sets were taken from the Adam portion of the Pearl-Sprouse
corpus, a parsed version of the child-directed portions of the Brown subcorpus from CHILDES
(Pearl & Sprouse, 2012). Additionally, in order to allow the algorithm to distinguish between
mass and count nouns, the NN label (the POS tag for singular nouns) corresponding to any
mass noun was manually replaced by an NNM label. Similarly, to allow the algorithm to have

rules applicable to all nouns, a node labeled simply N was inserted immediately above any node
labeled NN, NNM, or NNS (the POS tag for plural nouns).

Furthermore, as the algorithm makes use of a CKY parser, any tree in the corpus which was
not binary branching was modified to become right-branching. If an inserted node’s children
were both labeled N, it was labeled with N, so that the algorithm would treat compound nouns
the same way as other nouns, and similarly, if the first child was labeled JJ (the POS tag for
adjectives) and the second was labeled N, the inserted node was labeled N, as adjective-noun
pairs distribute similarly to nouns in this dataset. All other inserted nodes were labeled by

concatenating the labels of their children.

4000 noun phrases were then extracted from this modified corpus. None of these noun phrases
included smaller internal noun phrases, so as to allow the algorithm to focus on dependencies
between determiners and nouns, and all of them included at least one node labeled N (so as to
eliminate single pronouns from the data set). They were also selected so that at least 30% of
them contained mass nouns. 3200 of these nouns were randomly chosen to be the training set.
The remaining 800 became the test set. Furthermore, every lexical item in the test set that did
not appear in the training set was replaced with the word “unk” so that it could be properly

parsed by the induced grammar.

14 Chapter 3. Node-Based Induction

3.3 Tests Run

The first baseline I tested my induced grammar against was a PCFG. The rules of the grammar
were taken from all the PCFG productions in the test set, and the probabilities were set using
relative frequency estimates. Furthermore, rules going from each part of speech to “unk” were
added with probabilities set the same way as they were in the PTSG so that trees with unseen

lexical items could be parsed.

The second baseline was a PTSG whose rules were simply the full trees in the training set.
The probability of each rule was set using a relative frequency estimate, so the probability of a
given tree was simply the number of times the tree appeared in the training set divided by the

total number of trees in the training set.

The third baseline was a PTSG obtained by randomly sampling from the training set, specifi-
cally by decomposing each tree 100 times and setting the probabilities using relative frequency
estimates, just as at the end of the induction algorithm. However, instead of using the trained
probabilities, while sampling, the probability of each node being a substitution node was simply
set to its initial probability of 0.55. To make this more comparable to the induced grammar,
rules going from each POS tag to “unk” were added with their probabilities equal to their

probabilities in the induced PTSG, and all other rules’ probabilities were renormalized.

Lastly, Sangati and Zuidema’s code for double-DOP was run on training set to obtain their set
of fragments and CFG rules with counts. Using these counts, probabilities for each rule were
obtained using relative frequency estimates. Then the same rules for unknown lexical items
with the same probabilities as in the induced grammar were added, and the probabilities were

renormalized.

Finally, to avoid zero probabilities, especially for the full trees baseline, when computing the
probability of a tree in the test set with the PTSGs obtained through node-based induction,
sampling, and taking full trees, we also parse it with the PCFG induced for the first baseline.
(This was not necessary for double-DOP, as the algorithm for double-DOP already incorporated
all possible CFG rules.) The probability of the tree is then calculated to be a weighted average
of the two probabilities, with the PCFG weighted at 0.05, while the PTSG is weighted at 0.95.
Any trees in the test set that cannot be parsed with the PCFG are removed from the test set

and ignored.

Chapter 4

Results

Table 4.1 displays the results for how node-based induction compares to the baselines with a
training set of size 3200 and a test set of size 793. (Initially, the test set was of size 800, but 7
noun phrases were removed because they contained structures that were unseen in the training
set and thus could not be parsed by any of the grammars.) The numbers provided here were
obtained by summing the log probabilities of the best parses for each tree in the data set. (In
every case except for the PCFG baseline, these probabilities were also computed by taking a
weighted average of the probability of the best parse with the chosen model and the best parse
with a PCFG, as explained in the methods section). Thus, larger (i.e. less negative) numbers

correspond to higher probabilities and therefore better results.

Method Training Test Grammar Size
Node-Based | -25263 -6770 1359

PCFG -30905 -7091 990

Full Trees -22280 -6814 1572

Sampling -30135 -7266 1721
Double-DOP | -28882 -7032 2404

Table 4.1: Log probabilities of training and test sets on different grammars

These results demonstrate that, apart from simply memorizing the training set (and grossly
overfitting), the PTSG induced by node-based induction assigns the highest probability to the
training set. Additionally, when tested on an unseen test set, node-based induction outperforms
each of the baselines. It is also worth noting that when sampling randomly without first training
the substitution node probabilities, the resulting grammar performs nearly as badly as a PCFG
on the training set and worse than all other grammars on the test set, thus demonstrating

that the optimization of the substitution node probabilities is in fact what allows node-based

15

16 Chapter 4. Results

induction to produce a well-performing grammar. Furthermore, except for the PCFG, node-

based induction produces the smallest grammar and therefore most efficient to use for parsing.

Additionally, in the grammar induced through node-based induction, about 21% of the prob-
ability mass for noun phrases was reserved for previously seen full phrases memorized by the
system, and the rest was reserved for potentially novel noun phrases composed of smaller el-
ementary trees. This indicates that, while the grammar does memorize commonly occurring

noun phrases, it has strong generative capacities.

In order to gauge whether the phrases the induced grammar generated were grammatical, all
1442 noun phrases of the format “determiner noun” were extracted fro the training set and, for
each determiner that appeared more than 5 times, the probability distribution over different
types of nouns occurring with that determiner was computed. These distributions are shown
in table 4.3. Then, 1442 noun phrases of the form “determiner noun” were generated using
the PTSG induced with node-based induction, and the same distributions were computed,
shown in table 4.4. The same was done for the PCFG. Then, the Kullback-Leibler divergence
was computed between the distributions generated from each of the PTSG induced through
node-based induction and the PCFG and the true distribution from the training corpus, using

add-one smoothing to avoid zero probabilities. These values are shown in table 4.2.

Determiner | Node-Based PCFG
a 0.13 0.40
an 0.11 0.80
any 0.16 0.52
some 0.18 1.03
that 0.03 0.09
the 0.00 0.03
this 0.05 0.33

Table 4.2: K-L divergences of noun phrases generated by the node-based PTSG and the PCFG
compared to the empirical distribution

These results show that, while the distributions produced by the node-based PTSG are not as
strongly skewed as the empirical distributions, where many of the probabilities are over 0.9,
they do reflect dependencies between determiners and noun types. (This may also reflect that,
even in the empirical distributions, none of the probabilities are 1, reflecting the presence of
noun phrases like another coffee where a noun that would normally be a mass noun serves
as a coffee.) Furthermore, the K-L divergences are much smaller than those generated by the

PCFG, a formalism that cannot encode these dependencies.

Furthermore, qualitatively speaking, many of the elementary trees that appear in the grammar

induced by node-based parsing make linguistic sense, such as those in (1).

17

Determiner | Count Mass Plural
a 0.983 0.015 0.002
an 0.952 0.048 0.000
another 0.714 0.286 0.000
any 0.048 0.714 0.238
no 0.571 0.286 0.143
some 0.000 0.913 0.087
that 0.857 0.143 0.000
the 0.712 0.230 0.058
this 0.960 0.040 0.000

Table 4.3: Probability distributions of noun types cooccurring with common determiners in the

training set

Determiner | Count Mass Plural
a 0.82 0.15 0.03
an 0.71 0.18 0.11
any 0.32 0.53 0.16
some 0.18 0.79 0.03
that 0.85 0.10 0.05
the 0.74 0.21 0.05
this 0.86 0.03 0.10

Table 4.4: Probability distributions of noun types cooccurring with common determiners in

noun phrases generated by the PTSG

(1) a. NP b.

N
DT N

| |
a NN

NP

N

CD
|

two

N
|

NNS

(1a) represents that a only appears before count nouns. (1b) represents that two appears before

plural nouns. (1c) represents that some generally appears before mass nouns. Furthermore, to

account for the fact that some can also appear before plural nouns (which are rarer in the data

set than mass nouns) and even count nouns in limited grammatical contexts (as in sentences

like some person will like this), there is another elementary tree in the grammar identical to (1c)
but without the NNM node (so that N is a substitution node). However, this tree’s probability

is an order of magnitude lower than the tree in (1lc), indicating that some appears primarily

but not exclusively before mass nouns. Other rules indicate that the induced grammar learns

several common compound nouns, including cookie dough, rubber band, and trash can, as single

rules (instead of requiring each of the nouns to individually be substituted into a N — N N

rule, as would be the case in a CFG).

Chapter 5

Conclusion

In this thesis, I have presented a novel approach for induction of probabilistic tree substitu-
tion grammars, which represents the probability distribution over possible tree-substitution
grammars by assigning probabilities to potential substitution nodes and determines the opti-
mal probabilities through repeated sampling and parsing. This approach is able to produce
grammars that accurately represent dependencies between determiners and nouns, including,
for example, elementary trees that require a to appear before a count noun. Furthermore, these
grammars produce higher probability parses than standard PCFGs when tested on an unseen

test set and also outperform the grammars induced using the double-DOP approach.

Syntactic parsing is an important problem in natural language processing, which has applica-
tions to a number of practical problems ranging from machine translation to question answering.
Here, I have shown that tree-substitution grammars induced through node-based induction can
more accurately represent the probabilities of potential parses for non-recursive noun phrases
than traditional PCFG-based approaches or DOP-based approacheds. If future work were to
adapt this algorithm to work with larger grammatical structures, including full sentences, it
could be used to induce grammars that more accurately model language and generate more

accurate parses.

18

Bibliography

Bod, Rens & Remko Scha. 1996. Data-oriented language processing: An overview. Computing
Research Repository .

Cohn, Trevor, Sharon Goldwater & Phil Blunsom. 2009. Inducing compact but accurate tree-
substitution grammars. In Proceedings of human language technologies: The 2009 annual
conference of the North American chapter of the Association for Computational Linguistics,

548-556. Association for Computational Linguistics.

Collins, Michael. 2003. Head-driven statistical models for natural language parsing. Computa-
tional linguistics 589-637.

Johnson, Mark, Thomas L. Griffiths & Sharon Goldwater. 2006. Adaptor grammars: A frame-
work for specifying compositional nonparametric bayesian models. In Advances in neural

information processing systems, 641-648.

O’Donnell, Timothy J., Noah D. Goodman & Joshua B. Tenenbaum. 2009. Fragment gram-
mars: Exploring computation and reuse in language. Tech. Rep. MIT-CSAIL-TR-~2009-013
Massachusetts Institute of Technology.

Pearl, Lisa & Jon Sprouse. 2012. Computational models of acquisition for islands. Fzperimental
syntaz and island effects 109-131.

Sangati, Federico & Willem Zuidema. 2011. Accurate parsing with compact tree-substitution
grammars: Double-DOP. In Proceedings of the conference on empirical methods in natural

language processing, 84-95. Association for Computational Linguistics.

Schabes, Yves, Anne Abeille & Aravind K. Joshi. 1988. Parsing strategies with ‘lexicalized’
grammars: Application to tree adjoining grammars. In Proceedings of the 12th conference

on computational linguistics - volume 2, 578-583.

19

