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1 abstract

English has six kinds of sufϐixal morphemes that have [s] as an allomorph (so-called S
morphemes):

1. Clitic-is: The cat’s on the roof.

2. Clitic-has: The cat’s been on the roof.

3. Plural: There are two cats.

4. Possessive: The cat’s pajamas.

5. Plural-possessive: The two cats’ hats.

6. 3rd-sg verbal sufϐix: The cat jumps.

Generative models of phonology, such as those following in Chomsky & Halle (1968), predict
that these [s] segments should have the same phonetics independent of their morphemic
identity. This prediction arises from a theoretical division between morphology and
phonetics that prevents the two domains of language from talking to one another.
Nevertheless, recent research has revealed that morphology and phonetics can, in fact,
interact. One paper in this vein used linear mixed-effects modeling over a corpus of
spontaneous speech to establish durational differences between these classes of S
morphemes (Plag et al., 2017). This thesis presents the results of an experiment that tests
whether these phonetic differences generalize to cases where the sufϐixes attach to nonce
words. The results suggest that durational differences are not maintained in novel contexts,
and thus that these phonetic differences conditioned by morphology do not generalize. It
concludes with an explanation of the results through exemplar theory.
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3 introduction to English S morphemes

Morphemes are the units of linguistic structure that represent pairs of sound and meaning
(or, at least, sound and grammatical agreement). Morphemes have different functions—they
can be lexical (i.e., change semantic content), like English -ize, or functional, like the
past-tense -ed. The six S sufϐixes of English are lexical with the exception of the third-person
singular agreement marker and the clitics representing has and is, and they are listed below
(Plag et al., 2017):

1. Plural: There are twenty cats.

2. Possessive (a.k.a. Genitive): The cat’s pajamas.

3. Plural-possessive: The twenty cats’ pajamas.

4. Third-person singular marker (henceforth 3rdsg): The cat jumps onto the sofa.

5. Clitic-has: The cat’s done it now.

6. Clitic-is: The cat’s a problem.

In the same way that phonemes can be realized as different allophones in different contexts
(e.g., the change from a tap to a stop in the alternation between atom and atomic), a single
morpheme can be realized as several allomorphs, also called exponents. The S sufϐixes of
English, according to Bauer et al. (2013), appear as [-ɨz] following a sibilant (i.e., /s, z, ʃ, dፅ ʒ,
tፅʃ/), as [-s] following an voiceless consonant, and [-z] elsewhere. For the most part, these
distributions apply to all of the S sufϐixes given above. Minor exceptions exist in the plurals,
like the historically-based leaf∼ leaves alternation (Bauer et al., 2013). Plag et al. (2017)
also reports minor distributional differences for the possessive; however, overall there is no
reason for systematic differences in how people pronounce the different ϐlavors of S sufϐix,
though the present investigation discovered one allomorphic variation (see section 9.1).
They should appear as the same segments in the same contexts, and yet systematic
difference is exactly what Plag et al. (2017) reports.

This leads us to a note on notation: I adopt Plag et al. (2017)’s convention of using capital-S
as a stand-in for both /s/ and /z/ in word-ϐinal position. The term “S sufϐixes” refers to the
whole set of six morphemes described above, while non-sufϐixal S refers to /s/ and /z/
sounds that terminate single morpheme words (such as the [s] in lapse).
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4 introduction to homophony

Recent phonetic research (e.g., Gahl, 2008; Drager, 2011; Cho, 2001) has revealed subtle
differences in the phonetic realizations of homophonous segments at the segment,
morpheme, and word level—for example, differences in duration and vowel quality, or Cho
(2001)’s observation that segment sequences across morphemes are more variable than the
same segment sequences within morphemes. This paper investigates durational differences.

Many theories of speech production divvy words up into two parts: the phonological form,
which is roughly the information about a word’s sound, and the lemma, which is its meaning
and syntactic category. This separation of the syntactico-semantic subsystem from the
phonological subsystemmakes it possible to measure a word’s frequency in two different
ways: the frequency of the phonological form and the frequency of the lemma (Gahl, 2008).

In general, more frequent words are shorter—but frequent by which measure? Gahl (2008)
used English homophones to answer this question. Previous work (Jurafsky, 2003)
suggested that function words do not exhibit shortening as a function of lemma frequency.
Nevertheless, the linguistic machinery of function words can differ from that of lexical
words, and Gahl (2008) used samples of homophone pairs with one high-frequency word
and another low-frequency word to test whether shortening is a matter of lemma frequency
or of phonological form. Since high-frequency homophones share their phonological forms
with low-frequency homophones (e.g., time and thyme), it is possible to check whether or
not the shortening they exhibit seems in line with their lemma frequencies or the frequency
of their shared phonological form. Gahl (2008) uses regressions over 90,000 tokens in the
ĈĆđđčĔĒĊ corpus to do just that, and found that the phonological realizations of
low-frequency homophones like thyme are signiϐicantly longer than those of their
high-frequency counterparts, like time.

This body of research is twice important to the issue of S sufϐix duration in English. First, it
demonstrates that duration can be based on lemmas. Second, it reveals that lemma
frequency affects different swaths of the lexicon in different ways: function words do not
seem to shorten based on lemma frequency, but lexical items do. In this paper, we are
concerned with a third category of linguistic structure: sufϐixes below the word level. Do
they exhibit durational differences? And if so, do these durational differences pattern like
those of the lexical words (more frequent lemmas being shorter) or in some other way?
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5 observed differences in S morpheme duration

Plag et al. (2017) asks exactly this question about the S sufϐixes, and one of the goals of the
present research is to conϐirm their ϐindings in the laboratory. In English, Plag et al. (2017)
show that the six word-ϐinal homophonous S sufϐixes indeed differ in duration, both
compared to lexical word-ϐinal S (e.g., lapse v.s. laps), as well as compared to each other (e.g.,
laps v.s. lap’s). The connection to frequency is murkier at this level: frequency is not a
signiϐicant predictor of S sufϐix duration. Lowest in duration of all the S sufϐixes are clitic-is
and clitic-has, and though there are differences within the plural and genitive sufϐixes, these
are less robust and disappear with voicing.

Though these durational differences are statistically robust, they are on the scale of
milliseconds and are the result of large corpus studies—Plag et al. (2017) used the Buckeye
corpus and linear mixed-effects regressions to analyze the differences in S morpheme length
(Pitt et al., 2007). Meanwhile, Walsh and Parker (1983) tested a similar question using an
experimental paradigm and actually found that word-ϐinal, non-sufϐixal S was shorter than
sufϐixal S. Though their methodology does not pass muster by today’s standards (Tomaschek
et al., 2018), contradictory data warrants a follow-up.

5.1 a detailed look at Plag et al. (2017)

Since the present work relies on Plag et al. (2017) for direction, it is worth examining the
study more closely. Using tagged data from the Buckeye Corpus of Conversational Speech
(Pitt et al., 2007), the researchers ran statistical tests over 199 words containing a
non-sufϐixal S and just over twice that number containing sufϐixal S: 95 tokens of the plural,
100 of the 3rdsg, 88 of the possessive, 47 of clitic-has, 95 of clitic-is, and 23 of the
plural-possessive, for a total of 448 tokens. The aim was to reveal whether or not there were
durational differences between sufϐixal and word-ϐinal, non-sufϐixal S, as well as differences
within the class of morphemic S.

The statistical model took the form of a linear mixed effects model, in which the relationship
between variables is modeled in tandem with the possibility of random effects (for a more
complete explanation, see section 10.3). They made use of the following covariates to
duration: local speech rate, base duration, voicing, number of syllables, number of
consonants immediately preceding S, frequency, neighborhood density, bigram frequency,
previous mention, and following context. When voicing is removed as a variable (as it is in
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the experiment here), the following factors signiϐicantly predict duration. From strongest
predictor to weakest: Following context>> Type of S>> Base duration>> Number of
following consonants>> Syllables per second. For unvoiced realizations, possessive, plural,
3rd-sg marker, and plural-possessive sufϐixes were realized as signiϐicantly longer than the
clitics, and this is the pattern this paper sets out to replicate in the soundbooth.

6 theoretical implications

In models of generative phonology (foundationally, Chomsky and Halle (1968), phonological
rules determine which allomorph of an afϐix appears in the environment. After this
determination, the proper allomorph is stitched onto the base, and a process called bracket
erasure eliminates the boundary between base and afϐix for the rest of phonological
processing. In such a model, morphological boundaries should be invisible at the
articulatory stages of processing. Studies like Cho (2001); Plag et al. (2017), and Gahl (2008)
suggest that morphology can inϐluence phonetics. The possibility that S sufϐix durations
differ based on the kind of sufϐix is important to determine the exact nature of this interface:
the roles of prosody and articulation, dialectical variation, and the like. It is also a possible
locus of generativity within phonology and phonetics, as predicted by Jackendoff (1997).

7 critiques of corpus work

Though Walsh and Parker (1983)’s methodology and statistics are less rigorous than those
of Plag et al. (2017), concerns about corpus based methodologies have been raised recently.
Foulkes et al. (2018) encourage us to question whether or not the minute differences that
corpus studies report are realized in everyday speech acts, or if they can only be seen over a
large dataset. The answer to this question is relevant to determining the source of these
variations, their effects on language change, and their implications for language
architecture. Foulkes et al. (2018) highlight four problems with corpora—intra and inter
corpus variability, resolution, and statistical robustness. Variability occurs within corpora
because of the way they are collected, and across corpora because of the medium and
circumstances of recording. Likewise, the forced-alignment programs used for annotation
do not always work properly, and can be thrown for a loop by low-resolution recordings.
This is especially relevant to work that relies on small durational differences. In summation,
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the general assumption that statistics will save you from noise in the data is not necessarily
true when the data consists entirely of noise.

Other confounds that might affect variation are linguistic factors not parsable in the speech
signal. Prosody is particularly unaccounted for, and much of the variability attributed to
frequency and information content might be better attributed to speaker identity.

Another issue with statistical methods is the failure of coefϐicients and constants to
correspond with real-life interpretations. Rarely do phoneticians map the statistics to the
speech signal, and Plag et al. (2017) falls into this trap—it is well and good to ϐind that the
type of S sufϐix predicts the duration of the segment [s], but by howmuch does it change
between forms? If the differences are minute, it is possible that the information is not
accessible to the listener.

Foulkes et al. (2018) suggest that researchers do laboratory studies of corpus effects, and in
light of these vagaries, it is worthwhile to attempt laboratory conϐirmation of Plag et al.
(2017). Their results do help discriminate between theories of speech, but they require
experimental bolstering in order to be taken seriously.

8 methodology

8.1 materials

Whereas Plag et al. (2017) relied on the linear mixed-effects model to “control” for various
confounds on S-sufϐix duration, the experimental materials below are premised on
controlling for these confounds experimentally. The stimuli consist of nonce words and
sentential frames designed to elicit all the various types of S-sufϐixes on a single stem in
similar contexts. In each of the following sections, I explain the design of these stimuli in
terms of the covariates they hold constant.

8.1.1 nonce words

In total there were sixteen nonce words. They are shown below, orthographically and
phonemically, followed by an explanation of why and how they were chosen.
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1. bip /bɪp/

2. bimp /bɪmp/

3. vop /vɑp/

4. vomp /vɑmp/

5. dreep /dɹip/

6. dreemp /dɹimp/

7. sfop /sfɑp/

8. sfomp /sfɑmp/

9. ϐlep /ϐlɛp/

10. ϐlemp /ϐlɛmp/

11. ϐloop /ϐlup/

12. ϐloomp /ϐlump/

13. sklup /sklʌp/

14. sklump /sklʌmp/

15. strop /stɹɑp/

16. stromp /stɹɑmp/

The words are monosyllabic since there is evidence from English (Kim and Cole, 2005) and
non-English (Nooteboom, 1972; Lindblom, 1963) languages that preceding syllables can
affect duration. In addition, single-syllable stimuli made calculating the syllable-per-second
speech rate easier. Each nonce word has /p/ as its ϐinal consonant for three reasons. First,
/p/ is voiceless, so it will only take the voiceless allomorph [-s]. Plag et al. (2017) observed
the greatest number of duration contrasts in this allomorph, so it is the one focused on in
this experiment. If there is no durational difference in the voiceless case, then it is unlikely
one would be seen in the voiced allomorphs, which are systematically shorter (Klatt, 1976).

Second, /p/ is made entirely with the lips; this allows the tongue blade maximal freedom to
move into the position for /s/. Another lingual sound like /t/ might have created gestural
interference since the tongue can only be in one place at a time.

Third, /p/ is a plosive, meaning that, in a waveform for the sentence, it appears as silence.
The transition from silence to frication makes the boundary between /p/ and /s/ extremely
easy to parse in a spectrogram, increasing the ease of visual conϐirmation of the boundary.

The nonce-words come in pairs based on the coda; for each token with a simple coda of the
form /Vp/, there is a token with a complex coda of form /Vmp/. These pairs were
constructed because the number of consonants preceding the S sufϐix was found to be a
signiϐicant predictor of duration in Plag et al. (2017)’s model. Such a ϐinding is in line with
previous work showing that consonants in clusters shorten (Klatt, 1976).

In addition, the onsets vary in number of consonants and consonant type. I did not have
access to neighborhood density data for these nonce words; however, neighborhood density
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was not found to be a predictor of S-duration in Plag et al. (2017), so it is unlikely that it
would have an effect in an experimental context.

8.1.2 sentential frames

In total there were twelve sentential frames, shown below orthographically. An underscore
represents the location of the nonce word, and the number in parentheses is the syllable
count. Explanation follows.

1. The two s run together in the mornings. (11)

2. The ’s run to work goes by a park. (9)

3. The two s’ run to work goes by a park. (10)

4. He s Rover the dog once a week. (9)

5. The ’s run a marathon before. (9)

6. The ’s running a marathon tomorrow. (11)

7. The two s key cars for fun sometimes. (9)

8. The ’s key witness failed to appear in court. (11)

9. The two s’ key witnesses failed to appear in court. (13)

10. He s key donors in order to ϐlatter them. (12)

11. The ’s keyed plenty of cars in its day. (10)

12. The ’s keying cars out front as we speak. (10)

As the syllable counts show, all sentences are roughly the same length. There are syntactic
and semantic cues for the type of S: for instance, the word two preceding the plurals.
Additionally, English orthographic conventions enable distinction between the kinds of
S-sufϐixes. For more information about how I ensured that the participants understood
which type of S-sufϐix was attached in each sentence, see section 8.3.

In Plag et al. (2017)’s models, the segments immediately following the S-sufϐix were the
strongest predictor of /s/ duration. A following approximant was associated with the
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longest durations, and a following stop was associated with the shortest ones, with
affricates, fricatives, nasals, and vowels occupying the middle of the distribution. In the
sentences above, the ϐirst syllable following the S-sufϐix is always either run, rover, or key
(the stop case). Thus, the sentences are designed to control for and verify this condition of
the model.

8.2 participants

Data came from ten Yale College undergraduates ages 21 and 22, all native speakers of
English from various locations in the United States. Six were women; four were men.

8.3 procedure

The recordings were taken in a sound booth using a logitech microphone. The participants
were given sixteen shufϐled sheets of paper, one for every nonce word, with the above
sentences printed on them (in the same order they are presented above). I instructed each
participant to begin by reading the sentences to her or himself and to understand how the
word was being used (as a noun or verb). I then asked them to say the word in the frame,
“This is a .” Then, they proceeded down the list. If any garden path effects occurred,
they were asked to read the sentence again until they understood it, and the token was
rerecorded.

Participants began the actual sentence elicitations by reading the sentence out loud. After
ϐinishing, they looked up, away from the page, and repeated the sentence twice—they were
instructed to do this as if in a conversation. The recordings were taken this way in light of
criticism (e.g., Plag et al., 2017; Gahl et al., 2012) of methodologies in which stimuli are read
out loud, since reading out loud tends to occur at a more regular pace than spontaneous
speech. This regular pace can erase the effects of lexical frequency on duration, so it is
controlled for here.

8.4 data processing

The initial recordings were taken into Audacity (Audacity Team, 2019), where the two
conversational samples for each sentence were clipped into a .wav ϐile. TextGrids were
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created in Praat (Boersma andWeenink, 2019) for each .wav ϐile using the University of
Pennsylvania forced aligner (Yuang and Lieberman, 2008). Since the aligner required ϐiles of
sampling frequency of 11,025čZ and the sampling rate of the recordings was at a higher
resolution (441,00čZ), running the ϐiles through Lennes (2017)’s Praat script
change_sample_rate_of_sound_files.praatwas necessary to perform the alignment.
In order to obtain ϐinal labeled .TextGrid ϐiles, I manually inspected the aligner-generated
.TextGrids against the higher-resolution ϐiles, and corrected any inconsistencies in the
sentence, nonce-word, and S sufϐix labels. The beginning of the S sufϐixes was taken to be the
onset of aperiodic energy, including any /p/ burst—the burst requires a spread glottis,
indicating that the /s/ gesture has already begun. The offset of the /s/ into /k/ was taken to
be the beginning of silence, which occurs during the velar closure. The offset into /ɹ/ was
taken as the beginning of voicing, which is characteristic of the approximant.

From the labeled intervals, I extracted the durations of each segment and word using the
duration_logger.praat script (Crosswhite, 2009) and imported them into R (R Core
Team, 2017), where all statistical analysis took place.

9 results

9.1 data exploration

Before we embark on our tour of the data, we should take stock of what data we have. As the
experiment was designed, there were ten speakers, sixteen nonce words, twelve sentential
frames, and two recitations of each nonce word-sentential frame combination, which should
give a total of (10)(16)(12)(2) = 3,840 measurements.

Life being different from experimental plan, this is not the real number of measurements.

Subject no.5 was unable to pronounce sfop or sfomp, and the data for her tokens of vomp
were corrupted during the Audacity saving process. Thus, we begin data exploration with
(9)(16)(12)(2) + (13)(12)(2) = 3,768 tokens.

In the ϐirst place, we look to the differences in how individual speakers pronounce
word-ϐinal S sufϐixes, as shown in Figure 1. 1 The subjects show considerable variability in

1Note that Figure 1 consists of boxplots; all boxplots in this paper are marked by a horizontal bar at the
median, and the box shows the middle 50% of the data points. The lines extend to the full range of the data

11



the length of their pronunciation of S, and cursory inspection marks speakers 1 and 5 as
pronouncing both plural and plural-possessive S longer than the other types of sufϐixes.

Figure 1: The x-axes show the type of S sufϐix, and the plot is tessellated by speaker. The y-axis
shows the natural logarithm of the sufϐix duration measured in milliseconds (the logarithm
is unitless). Explanations of the log-transform and the missing plural-possessive tokens for
subjects no.5 and no.7 follow later in this section.

Next, we survey the sufϐix durations over the words: Did any nonce words prompt
noticeably longer S sufϐixes? Figure 2 suggests no. All of the medians are between four and
ϐive. Some nonce words seem generally longer than others (e.g., bips v.s. ϔlemps); however,
no systematic structure of the words (number of segments, length of coda or onset, etc.)
seems to condition this variation.
except for suspected outliers, which are shown as individual points.
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Figure 2: The x-axes show the sufϐix type in question, and the y-axis gives the logarithm of
the duration (in milliseconds) of the associated word. All sixteen nonce words are present,
tessellated in alphabetical order.

The mathematics of the linear mixed-effects model that we will use in future sections
depends on the data involved being either divided into discrete categories or normally
distributed. So as part of our preliminary screening, we check the shape of the data within
each type of S sufϐix in ϐigure 3. These distributions skew right and are not normal; however,
this is typical of speech data and psychological experimental data more generally (Baayen
and Milin, 2010). In many cases, the natural logarithm of the variable may be normal even if
the variable is not. This is the case in Figure 4, which uses the natural logarithm of the
durations on the y-axes rather than the durations themselves. The actual durations are
easily recoverable by exponentiating the logarithm. This normality motivates the choice of
log(sufϐixDuration) for the y-axes in ϐigures 1 and 2.
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Figure 3: Kernel density plots for each S sufϐix type show the density of the sufϐix duration (in
milliseconds) on the y-axes, and the duration of S sufϐix on the x-axes.

Figure 4: Kernel density plots show the density of the logarithm of the sufϐix duration (inmil-
liseconds) on the y-axes, and the logarithm of the duration on the x-axes. Note the improved
normality.

A major predictor of S sufϐix duration in Plag et al. (2017) is the duration of the stem (the
word to which the S sufϐix is attached—e.g., “cat” in “cats”). So we must conϐirm normality in
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these as well. Figure 5 shows that the durations are not normal, and ϐigure 6 shows that the
logarithm of the stem durations is more normal, as in the case of the sufϐix durations.

Figure 5: Kernel density plots showing the density of the duration (in milliseconds) of the
stems on the y-axes, and the duration of the stem on the x-axes.

Figure 6: Kernel density plots showing the density of the log-transformed duration (in mil-
liseconds) of the stems on the y-axes, and the log-transformed durations on the x-axes. Note
the improved normality.
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Nevertheless, the durations for the plural-possessive type of S sufϐix is bimodal in both
ϐigures 5 and 6, which reveals a non-normal distribution. The source of this abnormality can
be traced to some unexpected dialectical variation among the subjects of the experiment.
Two of them, subject no.5 and subject no.7, realized the plural possessive /s/ as [sɨz] in all
contexts. For instance, they pronounced bips’ as [bɪpsɨz], epenthesizing a vowel. This extra
vowel adds length to the stem for a subset of the plural-possessive tokens. If we throw out
these tokens, leaving us with (8)(16)(12)(2) + (16)(10)(2) + (13)(10)(2) = 3,652 data
points, we see that the tokens of log(Stem duration) are now normal in all cases, as shown in
ϐigure 7.

Having removed these ĕđPĔĘ tokens, it is worth checking to see if the log-transformed S
sufϐix durations are still normal over each type. Figure 8 conϐirms that they are.

Figure 7: Kernel density plots showing the distribution of the logarithm of the stemdurations
on the y-axes (in milliseconds) and the logarithm of the stem durations on the x-axes for each
type, with the plural-possessive tokens of subjects no.5 and no.7 removed due to dialectical
variation.
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Figure 8: A kernel density plot showing the distribution of the logarithm of S sufϐix durations
(in milliseconds) for each type, excluding plPos data from subjects no.5 and no.7.

The reader should note that from this point forward, all ϐigures depicting the data use the
restricted dataset of 3,652 points.

The data is now normalized, so a sanity check is in order. We have two measures, speech
rate (syllables/second) and log(Stem) (unitless) that should, all else equal, correlate in
speciϐic ways with our data. In order to ensure that the collected tokens for sufϐix duration
behave as they should, we can check their correlations with these two measures. Assuming
that the correlations pan out the way we expect them to, then these variables will make for
important ϐixed effects in the model we build in later sections.

There should be a negative correlation between speech rate and sufϐix duration because as
people speak faster, they pronounce individual sounds for less time. This negative
correlation is what we see in ϐigure 9, and it is also found in Plag et al. (2017).
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Figure 9: A scatter plot showing the distribution of the logarithm of sufϐix duration (in mil-
liseconds) on the y-axis and speech rate, in syllables-per-second, on the x-axis. A best-ϐit line
is shown to demonstrate the negative correlation.

Figure 10: A scatter plot showing the distribution of the logarithm of sufϐix duration (in mil-
liseconds) on the y-axis and the logarithm of stem duration (in milliseconds) on the x-axis. A
best-ϐit line demonstrates the positive correlation.

Stem duration (and thus its normally-distributed proxy, the logarithm of stem duration)
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should correlate positively with sufϐix duration: if every other sound in a word is short, then
the word-ϐinal sound, even if it is a separate sufϐix, should be short as well. This behavior is
shown in ϐigure 10.

Thus, the sufϐix durations behave as we expected them to in relation to speech rate and stem
duration, which is a vote of conϐidence in the accuracy of our data. Both of these covariates
will appear as ϐixed effects in our model.

Another indication that the experimental data does not reϐlect natural speech is a durational
difference between the ϐirst and second elicited S sufϐix for a given word-sentence
combination. If the second repetition of the sufϐix is signiϐicantly shorter than the ϐirst, then
the articulators might be reciting automatically, rather than as they would in a normal
speech act. For instance, if the S sufϐix in “The two dreemps run together in the mornings” is
much longer in the ϐirst token than in the second, it is an indication of a different sort of
motor control over the articulators. Figure 11 shows no apparent difference between the
ϐirst and second elicitation of the S sufϐix for a given sentence.

Figure 11: A boxplot showing the logarithm of the duration (in milliseconds) of S sufϐixes on
the y-axis. The x-axis is divided into categories for whether the sufϐix was the ϐirst or second
repetition of the nonce word—the recitation order.
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Figure 12: The y-axis represents the logarithm of the sufϐix durations (in milliseconds) and
the x-axis shows the types of sufϐixes. Note that the medians of the plural, plural-possessive,
and possessive sufϐixes are noticeably higher than the 3rdsg, clitic-is, or clitic-has sufϐixes.

Figure 13: The y-axis represents the logarithm of the sufϐix durations (in milliseconds) and
the x-axis shows the types of sufϐixes where plural, plural-possessive, and possessive have
been collapsed into one, vaguely-named category ĘĚċċĎĝ.

We look at whether or not the sufϐix durations differ based on the type of sufϐix. Figure 12
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shows higher medians and distributions for the plural, plural-possessive, and possessive
sufϐixes than for the others, which is consistent with Plag et al. (2017). If we collapse these
three sufϐixes into one class, as in ϐigure 13, the difference becomes even clearer.

The strongest predictors of sufϐix length reported in Plag et al. (2017) were the consonant
immediately following the S sufϐix. Approximants, like /l/ or /ɹ/, lengthened sufϐix durations
while stops shortened them. This difference is natural from an articulatory standpoint: the
occlusion of the airway in a stop causes an immediate cessation of the airϐlow necessary to
sustain [s], while approximants do not greatly occlude airϐlow. The sentential stimuli tested
this prediction; half of the S sufϐixes were positioned preceding a word beginning with the
approximant /ɹ/ and half preceded /k/. Figure 14 shows that the S sufϐixes preceding the
approximant were indeed much longer than those preceding the stop, bearing out the effect
found in Plag et al. (2017). One question is whether or not the different types of S sufϐixes
are affected by the following consonant in different ways. For example, does the plural sufϐix
lengthen before /ɹ/, but not the possessive sufϐix? Figure 15 compares how the type of the
sufϐix interacts with the following consonant to produce duration differences, and it does
not show any major effects—perhaps marginally, the plural, plural-possessive, and
possessive sufϐixes lengthen more in front of the approximant than do clitic-has, clitic-is, and
the 3rdsg sufϐix. We will explore the possibility of this interaction more in future sections.

Figure 14: This boxplot, with the log-transformed sufϐix duration (in milliseconds) on the
y-axis and the following consonant on the x-axis, shows that the [s] segments preceding the
approximant were much longer than those preceding the stop.

21



Figure 15: The y-axis displays the log-transformed sufϐix duration in milliseconds, and the
x-axis displays the sufϐix type. The following consonant, whether /k/ or /r/, is shown via the
color of the box. Note that all sufϐix types lengthen in front of the approximant, but that plural,
plural-possessive, and possessive appear to lengthen slightly more.

Plag et al. (2017) found that the number of consonants preceding the S sufϐix signiϐicantly
predicted the sufϐix’s length, and there is cross linguistic evidence that increasing the
number of segments in a given morphological unit leads to compression of the segments.
That is, the more sounds in a phrase, the shorter each sound becomes (Klatt, 1976;
Nooteboom, 1972; Lindblom, 1963), thus it was included in experiment here, where the
nonce words ended in either /p/ or an /mp/ cluster. Figure 16 shows that this condition did
not have an apparent effect on S sufϐix duration, which is out of step with the previous work.
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Figure 16: On the y-axis, we have the log-transformed S sufϐix duration (in milliseconds), and
on the x-axis we have two conditions—when ĈđĚĘęĊė is ęėĚĊ, the sufϐix was attached to a
nonce word ending in /mp/, andwhen ĈđĚĘęĊė is ċĆđĘĊ, the nonce word ended in a singleton
/p/. There is no visible difference between the two conditions, indicating no compression
took place, or that any compression was minor.

Another place to look for compression effects is the relationship between S sufϐix length and
stem length, shown in ϐigure 10. In ϐigure 10, the S sufϐix compresses along with the stem: as
the stem shortens, so does the S sufϐix. However, since the entire conceit of this paper is to
explore these S sufϐixes as a non-homogenous group, it makes sense to wonder whether or
not they are all equally vulnerable to compression effects. Figure 17 explores this question.
Steeper slopes indicate that the sufϐix compresses more, that a shortening of the stem does
leads to a shortening of the sufϐix. Steeper slopes appear for the plural and plural-possesive
sufϐixes, while the clitics are quite level.

23



Figure 17: On the y-axes, we have the logarithm of the sufϐix duration in milliseconds. On
the x-axes, we have the logarithm of the stem duration in milliseconds. There is one scatter
plot per type of S sufϐix, with a line of best ϐit displayed to show a positive, negative, or lack
of correlation. The ϐlatter slopes indicate less compression of the S sufϐix along with the stem
(see the preceding paragraph for a full explanation).

9.2 summary of results

The above visualizations alert us to a number of trends in the data. The duration data is
right skewed—typical of this type of data—but the log-transform is not. Speakers no.5 and
no.7 caused non-normality in the data for the plural-possesive sufϐixes due to dialectical
variation, so their tokens for those sufϐixes were removed from the dataset.

Stem duration and speech rate both correlate with S sufϐix durations, as is expected, and the
S sufϐixes of plural, plural-possessive, and possessive types appear to have slightly longer
durations. Like Plag et al. (2017), the type of consonant following the S sufϐix is a powerful
predictor of duration; unlike Plag et al. (2017), the number of consonants preceding the S
sufϐix is not. These consonant and stem duration variables seem to interact with the type of
sufϐix, as shown in ϐigures 15 and 17: the different S sufϐixes respond differently to changes
in predictors, bolstering the hypothesis that they are not a homogenous class when it comes
to phonetic behavior.
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All of these trends amount to hypotheses; the visual inspection of the data cannot provide
statistical signiϐicance. In the following section, linear mixed-effects modeling is used to test
these observations for signiϐicance, with the ultimate goal of determining how homogenous
the pronunciation of the S sufϐixes are in different contexts.

10 analysis

The next sections are laid out as follows: In section 10.1, I explain how the mathematical
model we will construct will provide us with an answer to our question—whether the
English S sufϐixes differ systematically in length—and how we will go about constructing it.
We test for patterns and problems in the data by constructing various graphs, we correct the
problems, and we construct the actual model and determine whether or not the different S
sufϐixes were produced with different durations.

10.1 linear mixed-effects modeling

There are many reasons that the given sounds in a given word are pronounced the way they
are: where the word is said, why it is said, who says it, how loudly, to whom, in a statement
or question, etc. Plag et al. (2017) found that one of these factors, for the /s/ sounds at the
end of words, is the type of S sufϐix. The team did so using a linear mixed-effects model, a
kind of mathematical model in which a given phenomenon—here, the log-transformed
duration in milliseconds of an S sufϐix—is described as the combination of random and ϐixed
effects. These effects are variables that help predict the target variable (the thing we want to
predict) that the researchers are modeling. For example, say our target variable is
tomorrow’s temperature in a given city. Two effects we would like to include in our model
are the temperature today and the average temperature of tomorrow’s date over the past
ten years.

The usefulness of linear mixed-effects models comes from their division of effects into
random and ϔixed (for a detailed and accessible guide to linear mixed-effects models, and
linear models in general, please see Winter (2013), from which all of this information is
adapted.) A ϐixed effect is a variable that we expect to determine the target variable in a
speciϐic, systematic way. For instance, for the issue at hand here, we expect that the speech
rate of the subjects will systematically affect the duration of the S sufϐixes. The higher the
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speech rate, the shorter the sufϐix; this is what is meant by ”systematic.”

One reason to use linear mixed-effects models here is that they provide information about
how good the ϐixed effects are at predicting the target variable. They tell us whether or not a
given effect is involved in the target variable outcome. In our temperature predicting
example, it would be possible to include day of the week as a ϐixed effect; however, the
model will, through a lack of statistical signiϐicance, reveal this as a terrible predictor.

Random effects, by contrast, are variables we believe will affect the target variable, but it is
more difϐicult to predict in what way the effect will display itself. For example, consider
speaker identity. It makes complete sense that different speakers will pronounce words
differently, but there is no easy a prioriway to determine whether each speaker will
pronounce a word faster or slower than any other. Colloquially, one could say that the
speaker introduces a little bit of randomness to the model, and it is just these sorts of
unpredictable, non-systematic variables that compose a model’s random effects. More
precisely, a random effect is sampled from the population and does not exhaust it. For
instance, there are many more possible subjects and nonce words than those used in this
experiment, but there are no other kinds of S sufϐixes, so the data exhausts the population of
S sufϐixes but not of subjects and nonce words.

In sum, a linear mixed-effects model is a way of predicting the value of one target variable
based on several ϐixed and random effects, which have a relationship with the target
variable. They also provide information about whether or not a given effect is statistically
signiϐicant with respect to the target variable. In our case, the target variable is the duration
of sufϔixal S, and the crucial question is whether the type of S proves to be a statistically
signiϐicant ϐixed effect. Before we test that we must add to the model all other ϐixed effects
which we know affect S sufϐix duration. The type of S is only a signiϐicant new predictor if it
makes a model based on the other predictors more accurate. We explored many possible
predictive factors in section 9.1.

Before we begin choosing ϐixed effects, we must decide on random effects. As seen in the
methodology section, experiments were highly controlled. Nevertheless, randomness enters
our data in three main ways.

The ϐirst is through the subject identities. Each experimental subject adds a bit of
randomness to the data and comes nowhere close to exhausting the population of English
speakers. Adding ĘĕĊĆĐĊė as a random intercept (the standard way to add this sort of
random effect) allows the model to account for howmuch variation is due to the subject
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rather than the S sufϐix type or any other ϐixed effect. To view the variation in S
pronunciation by the ten subjects, see ϐigure 1.

The next random effect is the effect of the individual nonce words. Each nonce’s string of
segments—really a string of muscle movements—cannot be said to interact with the S sufϐix
durations in any given way, but it likely does since some motor sequences are easier and
more ϐluid than others. Likewise, the experiment did not exhaust all nonce words.

The ϐinal random effect we include in the model is that of the sentence. Each nonce word
cycled through all twelve sentential frames over the course of the experiment, so it is
possible to tease out any random effect that the sentences may have imposed over the S
sufϐix duration independently of the nonce words.

10.2 data preparation

One way to build linear mixed-effects models (which will be done in the next section), put
forth by Baayen and Milin (2010), is to preliminarily trim a small number of outliers from
the dataset before embarking on the analysis. Then, after the major ϐixed and random effects
have been decided on, another small trimming of outliers may take place before the model is
tested. The preliminary trim, in this case, targeted the most extreme 1% of tokens of the
log-transformed S sufϐix durations (thirty-seven of the 3,652 data points remaining after
removing the deviant plural possessive tokens). Figures 18 and 19 are probability plots of
the data, indicating that the removal of these 37 outliers bring the dataset closer to
normality. All the linear mixed-effects models here use this trimmed dataset of 3,615 tokens.
See table 1 for a breakdown of howmany tokens of each sufϐix type are used for modeling.

clitic-is 3rdsg clitic-has plural plural-possessive possessive

625 624 620 618 503 625

Table 1: This table displays the number of tokens of each S sufϐix type used in the linearmixed
effects models below.
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Figure 18: A probability plot, with all the log-transformed S sufϐix durations on the y-axis and
theoretical quantiles on the x-axis, including the 1% outliers. A normally distributed data set
will appear as approximately a 45°line through the origin. Note the deviancy from normality
at the ends.

Figure 19: A probability plot, with the trimmed log-transformed S sufϐix durations on the y-
axis and theoretical quantiles on the x-axis. A normally distributed data set will appear as
approximately a 45°line through the origin. Note that this set, though still nonlinear at the
ends, is more linear than the one in ϐigure 18
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10.3 model building

All linear mixed-effects models in this paper were created in R through the lme4 package (R
Core Team, 2017; Bates et al., 2015). Results of each model, and their comparison via ĆēĔěĆ,
can be found in the Appendix, with which the reader is encouraged to interact throughout
this section. The initial model contains three random random effects as random intercepts:
the subject, the word, and the sentential frame, with the log-transformed S sufϐix as the
dependent variable. The only ϐixed effect was speech rate (ĘĕĊĊĈčRĆęĊ), in syllables per
second. From there, the following variables were added one at a time (random effects held
constant), in the following order:

1. Log-transformed stem duration (đĔČ(SęĊĒ))

2. Following consonant—either /r/ or /k/ (ċĔđđCĔēĘ)

3. Consonant cluster in coda—did the nonce word end in /mp/? (ĈđĚĘęĊė)

4. Recitation order—was the sufϐix the ϐirst or second in the repetition of the frame
sentence? (ėĊĈĎęĆęĎĔēOėĉĊė)

After the residuals were tested for normality and non-heteroskedasticity (again, see Winter
(2013)), the models were tested for signiϐicance via a likelihood ratio test, performed with
pairwise ĆēĔěĆs. As an illustration of how this works, consider the model with both
đĔČ(SęĊĒ) and ĘĕĊĊĈčRĆęĊ. In order to determine whether or not this model was
signiϐicantly better than the model based only off of ĘĕĊĊĈčRĆęĊ, I ran an ĆēĔěĆ comparing
the two models, which returned three pieces of information: both models’ AIC, both models’
BIC, and a likelihood ratio. The AIC and BIC are two slightly different measures that penalize
complexity and overϐitting, and lower values for these criteria indicate a better model (Kuha,
2004). Higher values suggest that the model may be learning the speciϐic data points rather
than the trends underlying these points. The likelihood ratio is similar to a probability value,
with statistical signiϐicance set at or below 0.05. So in the current example, the model using
only ĘĕĊĊĈčRĆęĊ had AIC = -1,378.5 and BIC = 1,341.3. The model using both ĘĕĊĊĈčRĆęĊ
and đĔČ(SęĊĒ) had AIC = -1,764.5 and BIC -1,721.2—both criteria were lower than the
single-variable model. The likelihood ratio was 2.2×10−16, far below 0.05. Therefore, we
conclude that đĔČ(SęĊĒ) is a signiϐicant predictor of log-transformed S sufϐix duration, and
we retain it in our model.
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These three criteria—lower AIC, lower BIC, and likelihood ratio below 0.05—were met by
the addition of đĔČ(SęĊĒ), ċĔđđĔĜĎēČCĔēĘĔēĆēę, and ėĊĈĎęĆęĎĔēOėĉĊė, but not by
ĈđĚĘęĊė. Therefore, ĈđĚĘęĊė was left out of the model. The resulting model of the
log-transformed S sufϐix durations as a function of four ϐixed effects and three random
effects is our baseline model; in order to justify any additional explanatory variable, it must
improve on this baseline. Table 10.3 below gives the coefϐicients, t-values, and predicted
unit change in milliseconds of the baseline model.

ċĎĝĊĉ ĊċċĊĈę coefϐicient t-value unit change in ms

ĘĕĊĊĈčRĆęĊ -0.076 -13.058 -1
đĔČ(SęĊĒ) 0.510 19.146 2
ċĔđđĔĜĎēČCĔēĘĔēĆēę = /r/ 0.350 13.106 1
ėĊĈĎęĆęĎĔēOėĉĊė = second -0.045 -6.305 -1

Table 2: Coefϐicients, t-values, and unit change inmilliseconds (rounded to the nearest whole
number) for the ϐixed effects of the baselinemodel. The reference value of ċĔđđĔĜĎēČCĔēĘĔ-
ēĆēę = /k/ and the reference value of ėĊĈĎęĆęĎĔēOėĉĊė = ϐirst. The unit change in millisec-
onds refers to the expected increase or decrease in S sufϐix duration for a unit increase in a
ϐixed effect. For categorical effects, it is the expected change in ms expected given the change
in reference value.

Now, we compare what happens if we add the type of S sufϐix (ęĞĕĊ) to the model. If it meets
the criteria above, then the model conϐirms the hypothesis that sufϐix type is a signiϐicant
predictor of duration.

The addition of ęĞĕĊ to the model yields the model represented in table 10.3; however, the
AIC of the model increases by 7.3, the BIC increases by 38.3, and the likelihood ratio is 0.748,
so the model is not signiϐicantly better than the model without ęĞĕĊ.
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ċĎĝĊĉ ĊċċĊĈęĘ coefϐicient t-value unit change in ms

ĎēęĊėĈĊĕę 1.87 10.8 6
ĘĕĊĊĈčRĆęĊ -0.075 -12.9 -1
đĔČ(SęĊĒ) 0.51 19.3 2
ċĔđđĔĜĎēČCĔēĘĔēĆēę = /r/ 0.35 14.95 1
ėĊĈĎęĆęĎĔēOėĉĊė = second -0.045 -6.2 -1
ęĞĕĊ = 3rdsg -0.021 -0.52 -1
ęĞĕĊ = has 0.017 0.42 1
ęĞĕĊ = pl -0.026 -0.63 -1
ęĞĕĊ = plPos 0.027 0.67 1
ęĞĕĊ = pos 0.021 0.52 1

Table 3: Coefϐicients, t-values, and unit change inmilliseconds (rounded to the nearest whole
number) for the ϐixed effects in the model including the baseline variables and the type of
S sufϐix. The reference value of ċĔđđĔĜĎēČCĔēĘĔēĆēę = /k/, the reference value of ėĊĈĎęĆ-
ęĎĔēOėĉĊė = ϐirst, and the reference value of ęĞĕĊ = “is.”

Nevertheless, the type of sufϐix might still have signiϐicant interactionswith other variables,
and it may still be a signiϐicant predictor for individual speakers.

Indeed, when we look at the interactions between S sufϐix type and stem duration (the sort
of relationship explored in ϐigure 17), we ϐind that the plural, plural possessive, and
possessive sufϐixes become more strongly predictive than when they are divorced from the
stem duration; however, compared to the baseline, this model does not pass
muster—though the AIC of the model with the interaction is 0.3 lower, the BIC is 30.7 higher,
and the likelihood ratio is 0.067.

One way to make statistics more meaningful is to reduce the degrees of freedom. Perhaps,
since plural and plural possessive seem to pattern together in ϐigures 15 and 17, the only
salient morphological factor for S sufϐix duration is whether or not the sufϐix is plural. To
that end, we consider two other models. The ϐirst, the ĎĘPđ model, has a ϐixed effect ĎĘPđ,
either true (for the plural and plural possessive sufϐixes) or false (for all other sufϐixes). The
second model, the interaction model, has a ϐixed effect for the interaction between ĎĘPđ and
đĔČ(SęĊĒ). The ĎĘPđ model has higher AIC and BIC values than the baseline model and lacks
statistical signiϐicance. The interaction model is statistically signiϐicant and has a lower AIC,
but has a higher BIC. Compared to the ĎĘPđ model, the interaction model is marginally
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signiϐicant, with likelihood ratio 0.0046, a lower AIC, and a BIC that is higher by 0.3.
Therefore, plurality alone and an in an interaction with the stem duration is not signiϐicant.

Breaking the data down by subject, ĆēĔěĆs comparing a subject’s baseline model (i.e., a
model with the ϐixed effects ĘĕĊĊĈčRĆęĊ, đĔČ(SęĊĒ), ċĔđđĔĜĎēČCĔēĘĔēĆēę,
ėĊĈĎęĆęĎĔēOėĉĊė and random intercepts for nonce word and sentential frame) to a model
including ęĞĕĊ yielded three signiϐicant likelihood ratios: 0.011 for subject 4, 0.0065 for
subject 5, and 0.034 for subject 7. Nevertheless, none of these models including ęĞĕĊ
yielded lower BICs, so these results do not satisfy our criteria. Various data-pruning
techniques—removal of more outliers, collapsing the types of S-sufϐixes so as to reduce the
degrees of freedom—do not nudge the model close to statistical signiϐicance; thus, we must
reject the proposition that the type of S sufϐix has a signiϐicant effect on S sufϐix duration in
nonce words.

11 discussion

To recapitulate, none of the models we have just examined in the previous section replicate
the ϐindings with respect to morpheme type in Plag et al. (2017). In failing to do so, it
conϐirms another paper, Foulkes et al. (2018), which expresses doubt that the phenomena
observed in large scale corpus studies are always replicable experimentally. The null result
presented here begets questions about the relationship between corpus work and
experimentation. In the what follows, I remark on this relationship and the sorts of mental
grammars that can contain both the present ϐinding and that of Plag et al. (2017)—a
grammar where S afϐix semantics affect /s/ duration in spontaneous speech, but not in novel
contexts.

The ϐinding here pertains only to the generalizability of the S morpheme duration ϐindings in
Plag et al. (2017) to nonce words, not the fact of the phenomenon in the wild. An
experimental replication with extant words, while much more difϐicult to control, would be
necessary to speak to whether or not that particular phenomenon could be found in the lab.
Nevertheless, the fact of duration differences in S afϐixes exclusively with extant words and
not in nonce words has implications for the structure of the language faculty.

One interpretation of the results in Plag et al. (2017) is that the different S afϐixes are
speciϐied down to the level of phonetic, rather than phonemic, detail. If this information
were truly coded into the afϐix, then this experiment would have demonstrated these
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differences, which did not happen. Instead, some other pressure drives the afϐixes apart in
the normal English lexicon. One candidate could be some covariate not included in the
battery used by Plag et al. (2017), such as the context of the utterance, but a variable that
would systematically affect S afϐixes without being folded into variables like speech rate.
Indeed, the team was so thorough that it is hard to imagine a covariate they overlooked.
More likely is that their data pool might have been too small, and the effects they saw were
by chance rather than by grammar.

Another explanation comes to us from exemplar theory, a theory in which speakers sample
from examplar banks linguistic categories (e.g., words, afϐixes, phonemes). The banks are
experiential memories of past instances of these categories, rather than abstract
representations (Winter andWedel, 2016). The participants in this study have no exemplars
of either the target words or the word-afϐix combinations, and this corresponds to a lack of
difference in the S afϐix. In real words, then, the differences in S afϐixes could be the product
of something like genetic drift, in which random variation in S afϐix duration when attached
to various words replicates itself by entering the exemplar banks of the speakers. In this
phonetic drift, the plural variant, say, may become longer simply because random
lengthening replicated itself. This lengthening does not occur in the actual abstract lexical
item corresponding to the sufϔix, rather, it occurs over the composed items. The results reϐlect
a system in which commonly composed stem-sufϐix pairs develop exemplar banks of
acoustic, motor, and somatosensory memories that are used for production. These exemplar
banks could pose the source of the variations in Plag et al. (2017). The semantics of dog + pl
maps to an exemplar dogs already in the memory, but the phonological form corresponding
to hoatzin + plmust be composed from the stem and the plural sufϐix for people who are not
ornithologists. In this novel combination, the undifferentiated /s/ is used.

The situation here bears resemblance to Becker et al. (2011), in which the authors take
Turkish voicing alternations as an example of a pattern in the lexicon that is “invisible” to
phonological learning. They found that the vowel quality was a strong predictor of voicing
alternation in a stem; however, no Turkish speaker used vowel quality as a predictor for
when they alternated in nonce words. In essence, the tendency in the spoken lexicon did not
generalize to the nonce words, which is exactly the situation here. The authors took their
ϐindings as evidence for a universal grammar that is blind to some patterns in the lexicon,
but not to others. A similar learning ϐilter could be at work over English S sufϐixes, where the
grammar does not see the variation in length as a possible generalization.

It is also worth noting that most of these S afϐixes are instantiations of lexical items with
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many possible phonemic forms. For example, the is-clitic is merely a form of the English
copula, which has many realizations, and any theory that ties phonetic realization to
semantic identity must account for phonetic instructions of the other realizations. Exemplar
theory does this well.

Lastly, a note on the statistical ϐindings of the present study. All of the variations reported in
section 10.3 are on the order of individual milliseconds. Though these are statistically
signiϐicant differences, it is unclear whether they are cognitively signiϐicant differences.
Word-ϐinal /s/ in English has an average duration of 95 milliseconds, meaning the
durational changes are miniscule—most English speakers do not notice the difference
between the duration of a word-initial s and a word-ϐinal s, which amounts to 34
milliseconds (Umeda, 1977). Moreover, the instruments we use measure may not have high
enough resolution to make these small millisecond differences useful, which is why Foulkes
et al. (2018) suggests, in the interest of scientiϐic conservatism, rounding durations in
increments of 5 milliseconds. By this most conservative measure, none of the effects seen
here are signiϐicant, and, as investigators using statistics, we ϐind ourselves looking at the
faces in the clouds rather than signals in the noise.
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MODEL 1: Constructing a model with one fixed effect, speech rate. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + (1 | subject) + (1 | 
word) +      (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2212.4  -2175.8   1112.2  -2224.4     3313 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6341 -0.6659 -0.0108  0.6198  5.0240 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.003725 0.06103 
 sentence (Intercept) 0.025868 0.16084 
 subject  (Intercept) 0.010983 0.10480 
 Residual             0.028541 0.16894 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
             Estimate Std. Error t value
(Intercept)  4.894839   0.063808   76.71
speechRate  -0.075344   0.004594  -16.40

Correlation of Fixed Effects:
           (Intr)
speechRate -0.376

Noah Macey
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Model 2: Adding a fixed effect of log(stem duration) to Model 1. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + (1 | 
subject) +      (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2483.9  -2441.1   1248.9  -2497.9     3312 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8288 -0.6305 -0.0109  0.5998  4.6379 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.011913 0.10915 
 sentence (Intercept) 0.023691 0.15392 
 subject  (Intercept) 0.007902 0.08889 
 Residual             0.026155 0.16173 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
             Estimate Std. Error t value
(Intercept)  2.367890   0.160520   14.75
speechRate  -0.047631   0.004685  -10.17
log(stem)    0.427018   0.024908   17.14

Correlation of Fixed Effects:
           (Intr) spchRt
speechRate -0.451       
log(stem)  -0.918  0.345

---
The model passes our criteria. 

anova(model1, model2)

Data: daata
Models:
model1: log(morphemeDuration) ~ speechRate + (1 | subject) + (1 | 
word) + 
model1:     (1 | sentence)
model2: log(morphemeDuration) ~ speechRate + log(stem) + (1 | subject) 



+ 
model2:     (1 | word) + (1 | sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
model1  6 -2212.4 -2175.8 1112.2  -2224.4                             
model2  7 -2483.9 -2441.1 1248.9  -2497.9 273.44      1  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



MODEL 3: Adding the following consonant as a fixed effect to model 2. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant +      (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2519.8  -2470.9   1267.9  -2535.8     3311 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8011 -0.6296 -0.0085  0.5987  4.6323 

Random effects:
 Groups   Name        Variance  Std.Dev.
 word     (Intercept) 0.0118279 0.10876 
 sentence (Intercept) 0.0007242 0.02691 
 subject  (Intercept) 0.0076727 0.08759 
 Residual             0.0261581 0.16173 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                     Estimate Std. Error t value
(Intercept)          2.181463   0.152684   14.29
speechRate          -0.044930   0.004474  -10.04
log(stem)            0.431352   0.024746   17.43
followingConsonantr  0.296065   0.016707   17.72

Correlation of Fixed Effects:
            (Intr) spchRt lg(st)
speechRate  -0.452              
log(stem)   -0.954  0.340       
fllwngCnsnn -0.005 -0.142 -0.031

---
It passes significance criteria

anova(model2, model3)
Data: daata
Models:
model2: log(morphemeDuration) ~ speechRate + log(stem) + (1 | subject) 
+ 
model2:     (1 | word) + (1 | sentence)



model3: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model3:     (1 | subject) + (1 | word) + (1 | sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
model2  7 -2483.9 -2441.1 1248.9  -2497.9                             
model3  8 -2519.8 -2470.9 1267.9  -2535.8 37.883      1  7.513e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



MODEL 4: Adding the following consonant as a fixed effect to model 3. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant +  
    cluster + (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2517.9  -2463.0   1268.0  -2535.9     3310 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8017 -0.6288 -0.0077  0.5988  4.6316 

Random effects:
 Groups   Name        Variance  Std.Dev.
 word     (Intercept) 0.0116924 0.10813 
 sentence (Intercept) 0.0007239 0.02691 
 subject  (Intercept) 0.0076702 0.08758 
 Residual             0.0261582 0.16173 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                     Estimate Std. Error t value
(Intercept)          2.192696   0.154646  14.179
speechRate          -0.044922   0.004474 -10.041
log(stem)            0.431404   0.024747  17.433
followingConsonantr  0.296065   0.016704  17.724
clusterTRUE         -0.023128   0.054365  -0.425

Correlation of Fixed Effects:
            (Intr) spchRt lg(st) fllwnC
speechRate  -0.445                     
log(stem)   -0.940  0.340              
fllwngCnsnn -0.005 -0.142 -0.031       
clusterTRUE -0.160 -0.008 -0.016  0.000
---
It is NOT a significant effect, so we leave CLUSTER out of future 
models.

anova(model3, model4)
Data: daata
Models:



model3: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model3:     (1 | subject) + (1 | word) + (1 | sentence)
model4: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model4:     cluster + (1 | subject) + (1 | word) + (1 | sentence)
       Df     AIC     BIC logLik deviance Chisq Chi Df Pr(>Chisq)
model3  8 -2519.8 -2470.9 1267.9  -2535.8                        
model4  9 -2517.9 -2463.0 1268.0  -2535.9  0.18      1     0.6714



MODEL 5 (the baseline model): Adding the recitation order as a fixed 
effect to model 3. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant +  
    recitationOrder + (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2554.3  -2499.3   1286.1  -2572.3     3310 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.0392 -0.6354 -0.0111  0.6006  4.8194 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.011026 0.10501 
 sentence (Intercept) 0.001251 0.03536 
 subject  (Intercept) 0.007661 0.08752 
 Residual             0.025834 0.16073 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.455834   0.157925  15.551
speechRate            -0.063282   0.005313 -11.911
log(stem)              0.402088   0.025027  16.066
followingConsonantr    0.305817   0.021366  14.313
recitationOrdersecond -0.040307   0.006549  -6.154

Correlation of Fixed Effects:
            (Intr) spchRt lg(st) fllwnC
speechRate  -0.511                     
log(stem)   -0.951  0.377              
fllwngCnsnn -0.011 -0.132 -0.036       
rcttnOrdrsc -0.261  0.523  0.173 -0.069
---
It passes our criteria, and this becomes our baseline model. 

Data: daata
Models:
model3: log(morphemeDuration) ~ speechRate + log(stem) + 



followingConsonant + 
model3:     (1 | subject) + (1 | word) + (1 | sentence)
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
model3  8 -2519.8 -2470.9 1267.9  -2535.8                             
model5  9 -2554.3 -2499.3 1286.1  -2572.3 36.497      1  1.529e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



MODEL 6: Comparing a model with S suffix type as a fixed effect with 
the baseline. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant +  
    recitationOrder + type + (1 | subject) + (1 | word) + (1 |      
sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2546.8  -2461.3   1287.4  -2574.8     3305 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.0391 -0.6377 -0.0123  0.6008  4.8266 

Random effects:
 Groups   Name        Variance  Std.Dev.
 word     (Intercept) 0.0110942 0.10533 
 sentence (Intercept) 0.0009339 0.03056 
 subject  (Intercept) 0.0076546 0.08749 
 Residual             0.0258371 0.16074 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.427661   0.159227  15.247
speechRate            -0.061940   0.005284 -11.723
log(stem)              0.405223   0.025027  16.191
followingConsonantr    0.305181   0.018731  16.293
recitationOrdersecond -0.039441   0.006540  -6.031
type3rdsg             -0.018468   0.032048  -0.576
typehas                0.013865   0.032062   0.432
typepl                -0.014587   0.032255  -0.452
typeplPos              0.022177   0.032319   0.686
typepos                0.018739   0.032140   0.583

Correlation of Fixed Effects:
            (Intr) spchRt lg(st) fllwnC rcttnO typ3rd typehs typepl 
typplP
speechRate  -0.513                                                        
log(stem)   -0.942  0.371                                                 
fllwngCnsnn  0.006 -0.150 -0.040                                          



rcttnOrdrsc -0.261  0.520  0.169 -0.079                                   
type3rdsg   -0.111  0.049  0.001 -0.007  0.025                            
typehas     -0.119  0.052  0.010 -0.007  0.027  0.501                     
typepl      -0.094  0.100 -0.029 -0.014  0.054  0.502  0.501              
typeplPos   -0.105  0.074 -0.010 -0.010  0.038  0.499  0.499  0.502       
typepos     -0.139  0.091  0.025 -0.012  0.048  0.502  0.502  0.504  
0.500
---
It does not pass
anova(model5, model6)
Data: daata
Models:
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
model6: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model6:     recitationOrder + type + (1 | subject) + (1 | word) + (1 | 
model6:     sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
model5  9 -2554.3 -2499.3 1286.1  -2572.3                         
model6 14 -2546.8 -2461.3 1287.4  -2574.8 2.5452      5     0.7697



MODEL 7: Comparing a model with suffix (all plural, plural-possessive, 
and possessives) as a fixed effect to the baseline model.

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant +  
    recitationOrder + suffix + (1 | subject) + (1 | word) + (1 |      
sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2552.5  -2491.4   1286.2  -2572.5     3309 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.0332 -0.6348 -0.0113  0.6015  4.8213 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.011022 0.10498 
 sentence (Intercept) 0.001212 0.03482 
 subject  (Intercept) 0.007666 0.08756 
 Residual             0.025835 0.16073 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.448970   0.158256  15.475
speechRate            -0.062950   0.005326 -11.819
log(stem)              0.402111   0.025025  16.068
followingConsonantr    0.305653   0.021067  14.509
recitationOrdersecond -0.040087   0.006554  -6.116
suffixTRUE             0.009963   0.020973   0.475

Correlation of Fixed Effects:
            (Intr) spchRt lg(st) fllwnC rcttnO
speechRate  -0.514                            
log(stem)   -0.948  0.375                     
fllwngCnsnn -0.009 -0.134 -0.037              
rcttnOrdrsc -0.263  0.524  0.172 -0.071       
suffixTRUE  -0.070  0.085 -0.012 -0.011  0.046
---
It does not pass.
anova(model5, model7). 



Data: daata
Models:
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
model7: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model7:     recitationOrder + suffix + (1 | subject) + (1 | word) + (1 
| 
model7:     sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
model5  9 -2554.3 -2499.3 1286.1  -2572.3                         
model7 10 -2552.5 -2491.4 1286.2  -2572.5 0.2216      1     0.6378



MODEL 8: Comparing a model with an interaction between type and 
log(stem duration) to the baseline model, and the baseline + type 
model.

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + (type * log(stem)) + 
followingConsonant +  
    recitationOrder + (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2549.1  -2433.0   1293.5  -2587.1     3300 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9852 -0.6377 -0.0129  0.5980  4.8446 

Random effects:
 Groups   Name        Variance  Std.Dev.
 word     (Intercept) 0.0110715 0.10522 
 sentence (Intercept) 0.0009329 0.03054 
 subject  (Intercept) 0.0076568 0.08750 
 Residual             0.0257411 0.16044 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.553646   0.244902  10.427
speechRate            -0.062276   0.005284 -11.785
type3rdsg             -0.027176   0.278679  -0.098
typehas                0.043776   0.293700   0.149
typepl                -0.626639   0.289836  -2.162
typeplPos             -0.441939   0.307564  -1.437
typepos                0.258200   0.285672   0.904
log(stem)              0.382861   0.041683   9.185
followingConsonantr    0.304992   0.018719  16.293
recitationOrdersecond -0.039494   0.006530  -6.048
type3rdsg:log(stem)    0.001640   0.049845   0.033
typehas:log(stem)     -0.005355   0.052613  -0.102
typepl:log(stem)       0.108886   0.051491   2.115
typeplPos:log(stem)    0.083226   0.054934   1.515
typepos:log(stem)     -0.043090   0.051135  -0.843
---
It does not pass.



anova(model5, model6, model8)
Data: daata
Models:
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
model6: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model6:     recitationOrder + type + (1 | subject) + (1 | word) + (1 | 
model6:     sentence)
model8: log(morphemeDuration) ~ speechRate + (type * log(stem)) + 
followingConsonant + 
model8:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
       Df     AIC     BIC logLik deviance   Chisq Chi Df Pr(>Chisq)  
model5  9 -2554.3 -2499.3 1286.1  -2572.3                            
model6 14 -2546.8 -2461.3 1287.4  -2574.8  2.5452      5    0.76967  
model8 19 -2549.1 -2433.0 1293.5  -2587.1 12.2644      5    0.03134 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



MODEL 9: Comparing a model with a suffix-stem duration interaction to 
the baseline model and the model with suffix.

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ speechRate + (suffix * log(stem)) + 
followingConsonant +  
    recitationOrder + (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2552.8  -2485.6   1287.4  -2574.8     3308 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9873 -0.6305 -0.0086  0.5998  4.8325 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.011008 0.10492 
 sentence (Intercept) 0.001232 0.03510 
 subject  (Intercept) 0.007664 0.08754 
 Residual             0.025816 0.16067 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.579134   0.179564  14.363
speechRate            -0.063438   0.005334 -11.893
suffixTRUE            -0.246945   0.170016  -1.452
log(stem)              0.379176   0.029169  12.999
followingConsonantr    0.305666   0.021219  14.405
recitationOrdersecond -0.040344   0.006554  -6.155
suffixTRUE:log(stem)   0.046058   0.030247   1.523

Correlation of Fixed Effects:
            (Intr) spchRt sfTRUE lg(st) fllwnC rcttnO
speechRate  -0.477                                   
suffixTRUE  -0.477  0.062                            
log(stem)   -0.960  0.348  0.509                     
fllwngCnsnn -0.009 -0.133 -0.001 -0.031              
rcttnOrdrsc -0.242  0.524  0.027  0.159 -0.070       
sffxTRUE:()  0.473 -0.052 -0.992 -0.514 -0.001 -0.021
---
It does not pass



anova(model5, model7, model9)
Data: daata
Models:
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
model7: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model7:     recitationOrder + suffix + (1 | subject) + (1 | word) + (1 
| 
model7:     sentence)
model9: log(morphemeDuration) ~ speechRate + (suffix * log(stem)) + 
followingConsonant + 
model9:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
       Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)
model5  9 -2554.3 -2499.3 1286.1  -2572.3                         
model7 10 -2552.5 -2491.4 1286.2  -2572.5 0.2216      1     0.6378
model9 11 -2552.8 -2485.6 1287.4  -2574.8 2.3168      1     0.1280



MODEL 10 BASELINE: creating a model with isPl as a fixed effect. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ isPl + log(stem) + speechRate + 
followingConsonant +  
    recitationOrder + (1 | subject) + (1 | word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2552.3  -2491.2   1286.1  -2572.3     3309 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.0391 -0.6354 -0.0111  0.6006  4.8193 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.011008 0.10492 
 sentence (Intercept) 0.001250 0.03536 
 subject  (Intercept) 0.007665 0.08755 
 Residual             0.025835 0.16073 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                        Estimate Std. Error t value
(Intercept)            2.4559503  0.1579592  15.548
isPlTRUE              -0.0001659  0.0225771  -0.007
log(stem)              0.4020785  0.0250472  16.053
speechRate            -0.0632844  0.0053213 -11.893
followingConsonantr    0.3058181  0.0213625  14.316
recitationOrdersecond -0.0403078  0.0065524  -6.152

Correlation of Fixed Effects:
            (Intr) iPTRUE lg(st) spchRt fllwnC
isPlTRUE    -0.022                            
log(stem)   -0.950 -0.040                     
speechRate  -0.512  0.056  0.374              
fllwngCnsnn -0.011 -0.007 -0.036 -0.132       
rcttnOrdrsc -0.262  0.031  0.172  0.523 -0.070
convergence code: 0



MODEL 10: comparing a model where isPl interacts with log(stem 
duration) to the baseline model and the model with only isPl. 

Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: log(morphemeDuration) ~ (isPl * log(stem)) + speechRate + 
log(stem) +  
    followingConsonant + recitationOrder + (1 | subject) + (1 |      
word) + (1 | sentence)
   Data: daata

     AIC      BIC   logLik deviance df.resid 
 -2561.1  -2493.9   1291.5  -2583.1     3308 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.9737 -0.6340 -0.0101  0.5980  4.8418 

Random effects:
 Groups   Name        Variance Std.Dev.
 word     (Intercept) 0.010991 0.10484 
 sentence (Intercept) 0.001278 0.03575 
 subject  (Intercept) 0.007657 0.08751 
 Residual             0.025748 0.16046 
Number of obs: 3319, groups:  word, 16; sentence, 12; subject, 10

Fixed effects:
                       Estimate Std. Error t value
(Intercept)            2.647856   0.168072  15.754
isPlTRUE              -0.605124   0.185275  -3.266
log(stem)              0.368125   0.027039  13.614
speechRate            -0.063868   0.005319 -12.007
followingConsonantr    0.305715   0.021577  14.169
recitationOrdersecond -0.040523   0.006543  -6.193
isPlTRUE:log(stem)     0.108103   0.032857   3.290

Correlation of Fixed Effects:
            (Intr) isPTRUE lg(st) spchRt fllwnC rcttnO
isPlTRUE    -0.345                                    
log(stem)   -0.955  0.373                             
speechRate  -0.490  0.035   0.357                     
fllwngCnsnn -0.012  0.001  -0.032 -0.130              
rcttnOrdrsc -0.248  0.011   0.162  0.524 -0.069       
isPlTRUE:()  0.345 -0.992  -0.380 -0.028 -0.002 -0.007
---



It does not pass. 
anova(model5, model10baseline, model10)
Data: daata
Models:
model5: log(morphemeDuration) ~ speechRate + log(stem) + 
followingConsonant + 
model5:     recitationOrder + (1 | subject) + (1 | word) + (1 | 
sentence)
model10baseline: log(morphemeDuration) ~ isPl + log(stem) + speechRate 
+ followingConsonant + 
model10baseline:     recitationOrder + (1 | subject) + (1 | word) + (1 
| sentence)
model10: log(morphemeDuration) ~ (isPl * log(stem)) + speechRate + 
log(stem) + 
model10:     followingConsonant + recitationOrder + (1 | subject) + (1 
| 
model10:     word) + (1 | sentence)
                Df     AIC     BIC logLik deviance   Chisq Chi Df 
Pr(>Chisq)   
model5           9 -2554.3 -2499.3 1286.1  -2572.3                             
model10baseline 10 -2552.3 -2491.2 1286.1  -2572.3  0.0001      1   
0.994322   
model10         11 -2561.1 -2493.9 1291.5  -2583.1 10.8044      1   
0.001013 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


